Specialization: Advanced Electronics

	Semester-III
Course Code	Course Name
21MSP614T	Basic Communication Systems
21MSP615T	Organic Electronics
21MSP616T	Semiconductor Physics and Devices
21MSP617P	Advanced Electronics Laboratory
21MSP601	Project-I
	Semester-IV
	Project - II

M.Sc. course					21MSP614T- Basic Communication Systems					
	Teaching Scheme			Examination Scheme						
_		_	~			Theory		Pra	ctical	Total
L	Т	Р	С	Hrs/Week	MS ES IA			LW	LE/Viv a	Marks
3	0	0	3	03	25	50	25			100

- > Know amplitude modulation an demodulation techniques in detail
- > Understand frequency modulation an demodulation techniques in detail
- > Learn various digital communication techniques.
- > Have an understanding of cellular communication and satellite communication.

UNIT 1 Amplitude Modulation/demodulation techniques	12 Hrs.
Noise-Introduction, internal and external noises, signal to noise ratio and noise figure, Bloc diagram of electronic communication system. Modulation-need and types of modulation-AM FM & PM. Amplitude modulation – representation, modulation index, expression fr instantaneous voltage, power relations, frequency spectrum, DSBFC, DSBSC and SSB Limitations of AM, Demodulation- AM detection: principles of detection, linear diode, princip of working and waveforms, Block diagram of AM transmitter and Receiver.	M, for S,
UNIT 2 Frequency Modulation/demodulation techniques	10 Hrs.
Frequency Modulation: definition, modulation index, FM frequency spectrum diagram, ban requirements, frequency deviation and carrier swing, FM generator-varactor diode modulat detector – principle, slope detector-circuit, principle of working and waveforms. Block diag FM transmitter and Receiver. Comparison of AM and FM.	tor, FM
UNIT 3 Digital communication	10 Hrs.
Introduction to pulse and digital communications, digital radio, sampling theorem, types- PWM, PPM, PCM – quantization, advantages and applications, digital modulations (FSK, PS ASK). Advantage and disadvantages of digital transmission, characteristics of data transmission circuits – Shannon limit for information capacity, bandwidth requirements, data transmission noise, cross talk, echo suppressors, distortion and equalizer, MODEM– modes, classif interfacing (RS232). TDMA, FDMA, CDMA concepts, comparison of TDMA and FDMA	SK, and mission speed,
UNIT 4 Cellular and Satellite Communication:	10 Hrs.
Concept of cellular mobile communication – cell and cell splitting, frequency bands used in a communication, absolute RF channel numbers (ARFCN), frequency reuse, roaming and ha authentication of the SIM card of the subscribers, IMEI number, concept of data encr architecture (block diagram) of cellular mobile communication network, CDMA technology, overview, simplified block diagram of cellular phone handset, Comparative study of GS CDMA, 2G, 3G and 4G concepts, Introduction, to Orbit, types of orbits, Block diagram of stransponder	and off, ryption, CDMA SM and satellite

Max. 42 Hrs.

COURSE OUTCOMES

On completion of the course, student will be able to

CO1: Explain Cellular communication and importance of frequency and amplitude modulations.

CO2: Apply the knowledge of statistical theory of communication and explain the conventional digital communication system.

CO3: Apply the knowledge of signals and system and evaluate the performance of digital communication system in the presence of noise.

CO4: Apply the knowledge of digital electronics to the real world problems.

CO5: Describe and analyze the digital communication system with spread spectrum modulation.

CO6: Analyze performance of spread spectrum communication system.

TEXT/REFERENCE BOOKS

- 1. Electronic Communication, George Kennedy, 3rd edition, TMH.
- 2. Electronic Communication, Roddy and Coolen, 4th edition, PHI.
- 3. Electronic Communication systems, Kennedy & Davis, IV edition-TATA McGraw Hill.
- 4. Advanced Electronic Communication systems, Wayne Tomasi- 6th edition, Low priced edition- Pearson education

END SEMESTER EXAMINATION QUESTION PAPER PATTERN

Max. Marks: 100

Part A/Question: 3 Questions from each unit, each carrying 3 marks Part B/Question: 2 Questions from each unit, each carrying 8 marks Exam Duration: 3 Hrs 36 Marks 64 Marks

M.Sc.					21MSP615T- Organic Electronics					
	Т	eachin	g Sche	me	Examination Scheme					
т	т	D	C	Hrs/Week		Theory		Pra	ctical	Total
L	1	I	C	111 S/ VV CCK	MS	MS ES IA LW LE/Viva				Marks
3	0	0	3	3	25	50	0	25	0	100

- > To develop the fundamental understanding of organic semiconductors.
- > To provide the comprehensive knowledge of the charge transport mechanism.
- > To analyse the processing and optical-electrical characteristics of organic semiconductor devices
- > Obtain the hands-on experience on organic device fabrication and characterizations

UNIT 1 Introduction to Organic Semiconductors 12 Hrs.

Organic Semiconductors: Introduction, Organic versus Inorganic solids, Molecular materials, Electronic states in conjugated molecules, Polymer fundamentals, Conjugated polymers. Electronic transport in crystalline organic materials and conductive polymers, Charge injection at metal/organic interface.

UNIT 2 Processing of organic materials

The essential characteristic of the electrode materials for organic electronic devices, R&D for new electrode materials, Organic electronic materials, and their processing techniques. Flexible electronics.

UNIT 3 Optoelectronic devices

The basic structure of organic devices, OLEDs and PLEDs, Flexible displays, operating principles of organic lasers, Bulk-heterojunction, Inverted, and Tandem organic photovoltaic (OPV) devices; Carrier loss mechanisms in OPVs; Nanomorphology; Hybrid Perovskite solar cells, Dye-sensitized solar cells.

UNIT 4 other electronic devices

Hybrid Memory devices, detector and organic thin-film transistors (OTFTs): fundamentals and working principles,

COURSE OUTCOMES

On completion of the course, student will be able to

- CO1 Explain the difference between organic and inorganic semiconductors.
- CO2 Analyze of the charge transport phenomenon in organic materials
- CO3 Design, and analysis of different layers of electronic devices.
- CO4 To explain and analysis different organic device processing

CO5 – Explain the operating principle and efficiency limitations in OPV, OLED, Laser, OTFT, Memory and Detectors

CO6 – Fabricate and characterize the hybrid devices

TEXT/REFERENCE BOOKS

- 1. Suganuma Katsuaki, Introduction to Printed Electronics, Springer, 2014.
- 2. Stergios Logothetidis, Handbook of Flexible Organic Electronics Materials, Manufacturing, and Applications, 1st Ed., Woodhead Publishing, 2014.
- **3.** Wolfgang Brütting and Chihaya Adachi, Physics of Organic Semiconductors, 2nd Ed., Wiley-VCH, 2012.
- **4.** Anna Köhler and Heinz Bässler, Electronics Processes in Organic Semiconductors An Introduction, 1st Ed., Wiley-VCH, 2015.
- 5. Wenping Hu, Organic Optoelectronics, 1st Ed., Wiley-VCH, 2013.

12 Hrs.

8 Hrs.

Max. 40 Hrs.

8 Hrs.

- 6. Sam-Shajing Sun and Larry R. Dalton, Introduction to Organic Electronic and Optoelectronic Materials and Devices, 2nd Ed., CRC Press, 2015.
- 7. Franky So, Organic Electronics: Materials, Processing, Devices, and Applications, CRC Press, 2010

END SEMESTER EXAMINATION QUESTION PAPER PATTERN

Max. Marks: 100

Exam Duration: 3 Hrs

Part A/Question: 3 Questions from each unit, each carrying 3 marks Part B/Question: 2 Questions from each unit, each carrying 8 marks 36 Marks 64 Marks

M.Sc.					21MSP616T- Semiconductor Physics and Devices					
	Т	eachin	g Sche	me	Examination Scheme					
т	т	Р	C	Hrs/Week	Theory Practical				Total	
L	1	I	C	111 5/ VV CCK	MS ES IA LW			LW	LE/Viva	Marks
3	0	0	3	3	25	25 100 25				100

- Develop the knowledge of applications and the necessity of electronic devices in different applications.
- > Obtain the fundamental understanding of semiconductor physics
- Obtain the knowledge of electronic properties and analysis of the two-terminal and threeterminal semiconductor devices
- > Apply the acquired knowledge to the operation mechanism of various semiconductor diodes
- Develop the skills in solving various real-world problems in the semiconductor device and engineering aspects.

UNIT 1 Semiconductor Physics and PN Junction	12 Hrs.
Introduction to Semiconductor Materials, Basic Crystal Structure, Basic Crystal Growth	n Technique,
Valence Bonds, Energy Bands, Intrinsic Carrier Concentration, Donors and Acceptors C	Carrier Drift,
Carrier Diffusion, Generation and Recombination Processes, Continuity Equation,	Thermionic
Emission Process, Tunnelling Process. Basic Structure of the pn Junction, Space Charg	
Electric Field, Junction Capacitance, One-Sided Junctions, Non-uniformly Doped Junction	ons: Linearly
Graded Junction	1
UNIT 2 Semiconductor Heterojunctions and MOSFET Devices	8 Hrs.
The Schottky Barrier Diode, Metal-Semiconductor Ohmic Contacts, Heterojunctions	s, The Two-
Terminal MOS Structure, Capacitance-Voltage Characteristics, The Basic MOSFET	C Operation,
Nonideal Effects, MOSFET Scaling, Threshold Voltage Modifications, Additional	al Electrical
Characteristics, JFET Concepts, The Device Characteristics, Nonideal Effects, Hi	gh Electron
Mobility Transistor.	1
UNIT 3 Semiconductor and nanoelectronic devices	10 Hrs.
Introduction to binary and ternary compound semiconductors, Tunnel Diode, IMPATT	Diode,
Transferred-Electron Devices, Quantum-Effect Devices, Radiative Transitions and Optic	cal
Absorption, Light-Emitting Diodes, Semiconductor Laser, Photodetector, Solar. High E	lectron
Mobility Transistors, Quantum Interference Transistors	
UNIT 4 Microwave Physics and Devices	10 Hrs.
Semiconductor microwave bipolar transistor, hetrojunction bipolar transistors, micro	wave tunnel
diodes, MESFETs, CCD Devices, Gunn effect and Gunn Diode Ridley-Walkinhilsum (R	HW) theory,
microwave linear beam tube(O type), klystron, reflex clystron, helix travelling wave t	ube(TWTs),
Microwave cross field Tubes(M Type), Magnetron	
I	Max. 40 Hrs.

COURSE OUTCOMES

On completion of the course, student will be able to

- CO1 Explain the basic concepts of semiconductor physics.
- CO2 Analysis of the charge transport phenomenon in semiconducting materials and devices.
- CO3 Explain and analyze the role of different interfaces
- CO4 Design the structure and analysis the bipolar transistor and MOSFET devices.
- CO5 Identify and rationalize the different two-terminal semiconductor and nano-electronic devices

 $CO6-Explain \ the \ operating \ principle \ and \ fundamentals \ of \ Microwave \ Physics \ and \ Devices$

TEXT/REFERENCE BOOKS

1. S.M. Sze: Physics of Semiconductor Devices

- 2. J. Singh, Semiconductor Devices Basic Principles, John Wiley & Sons Inc., 2001
- 3. S. Sedra and K. C. Smith, Microelectronic Circuits, Oxford University Press, 1997.
- 4. M. S. Tyagi, Introduction to Semiconductor Materials and Devices, John Wiley & Sons Inc, 1991.
- 5. M. Shur, Introduction to Electronic Devices, John Wiley & Sons Inc., 2000
- 6. R. T. Howe and C. G. Sodini, Microelectronics: An Integrated Approach, Prentice-Hall Inc. 1997.
- 7. B. G. Streetman, Solid State Electronic Devices, 5th Ed., PHI, 2001

END SEMESTER EXAMINATION QUESTION PAPER PATTERN

Max. Marks: 100	Exam Duration: 3 Hrs
Part A/Question: 3 Questions from each unit, each carrying 3 marks	36 Marks
Part B/Question: 2 Questions from each unit, each carrying 8 marks	64 Marks

	21MSP617P- Advanced Electronics Lab					
Teaching Scheme Examination Scheme	Examination Scheme					
L T P C Hrs/Week Theory Practical	Total					
L I I I C HIS/Week MS ES IA LW Viva	Marks					
0 0 6 3 6 50 50	100					

- > To develop the experimental knowledge of various semiconductor devices.
- To give hands-on experience of various semiconductor devices to understand their working mechanism and applications.
- > To implement the electronic devices, generate the data, and interpret it.

List of Experiments

- 1. To measure and compare the I-V characteristics of Silicon & Germanium PN Junction diodes
- 2. To study I-V characteristics of Zener diode.
- 3. To study I-V characteristics of BJT transistor in common (a) emitter and (b) base configuration.
- 4. Study the characteristics of FET in Common Source Configuration.
- 5. To measure and analysis the I-V characteristics of the supplied solar cell and find its spectral response.
- 6. Measurement of the resistivity of semiconductor by four-probe method.
- 7. Estimation of charge carrier concentration and mobility of a given semiconductor using the Hall effect method.

List of students mini-projects

- 1. Thin-film growth by solution process and their structural and optical characterizations
- 2. Fabrication and characterization of hybrid memristor devices.
- 3. Fabrication and characterization of hybrid solar cell devices.

COURSE OUTCOMES

On completion of the course, the students will be able to

- CO1 Identify and explain the basic electronic components and use them to design mini-projects
- CO2 Understand and analyze the characteristics of diodes and transistors
- CO3 Understand the mechanism of diodes and FET and their applications
- CO4 Hand-on experience on thin-film growth and their characterizations
- CO5 Have hands-on experience of fabrication of hybrid electronic devices.
- CO6 Able to analysis and explain the mechanism of hybrid solar cells and memristors

TEXT/REFERENCE BOOKS

- 1. S.M. Sze: Physics of Semiconductor Devices
- 2. J. Singh, Semiconductor Devices Basic Principles, John Wiley & Sons Inc., 2001
- 3. J.P. Holmann, Experimental methods for engineers
- 4. Organic-Inorganic Halide Perovskite Photovoltaics: From Fundamentals to Device Architectures, Editors: **Park**, Nam-Gyu, **Grätzel**, Michael, **Miyasaka**, Tsutomu, Springer International Publishing AG, 2015.
- 5. Sorab K. Ghandhi, VLSI Fabrication Principles: Silicon and Gallium Arsenide, 2ed, John Wiley & Sons Inc., 2008